[CONTRIBUTION FROM THE RESEARCH LABORATORIES OF THE UPJOHN COMPANY]

ANTISPASMODICS. IV. TERTIARYAMINO ALKYL ESTERS OF DISUBSTITUTED ACETIC ACID

ROBERT BRUCE MOFFETT, JAMES H. HUNTER, AND E. H. WOODRUFF

Received March 13, 1950

In previous work (1, 2) it was found that pyrrolidylethyl esters have higher antispasmodic activity than the pyrrolidylpropyl esters. To test further this generalization and to determine whether it would extend to branched chain compounds, we have now prepared a series of pyrrolidylpropyl esters in which methyl groups are substituted on the propyl link (Formula I).

The low activity of these compounds (Table II) has confirmed this generalization.

Included in this paper are a few pyrrolidylbutyl and pyrrolidylethoxyethyl esters. These also have low activity.

A number of N-isopropyl-N-methylaminoalkyl esters (Formula II) have been prepared.

Their activity (Table II) seems to be in general a little greater than that of the isomeric diethylaminoalkyl esters.

These esters were prepared from the corresponding acid chlorides and tertiaryamino alcohols by the method previously described (1, 2). The preparation of the requisite pyrrolidyl alcohols (3) and N-isopropyl-N-methylamino-ethanol and -isopropanol (4) have been recently reported. 2-(N-Isopropyl-N-methylamino)propanol was prepared¹ by the reductive alkylation of 2-aminopropanol with acetone in the presence of platinum and hydrogen, followed by methylation with formaldehyde and formic acid.

¹ Prepared by Mr. Gordon F. Kurtz in these laboratories.

R" ž Z C,H. TABLE I CHCO-0= н È FREE BASES

	R	R"	VIELD	Ŕ		R	WWIPTCAL.	NITRO	JEN,
NO.		AMINO ALCOHOL USED HUCK, N. 20	2% 2%	.		* D	FORMULA	b'əl	_q pur
				çi	Ë.			۶a	For
	CH3CH3CH2CH=CHCHCH(C6H3)COOH	HOCH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	83.8	140	0.016	.5205	C ₂₂ H ₃₁ NO ₂	4.10	1.19
ବ୍ୟ 1/	CH2CH2CH2CH4CHCH(CH4CH3CH2)COOH	HOCH(CH ₁)CH ₂ CH ₂ -NCH ₂ CH ₂ CH ₂ CH ₂	81.3	135	.22	.4671	C ₁₈ II ₃₃ NO ₂	4.74	1.82
ന 014	CH2CH2CH2CH—CHCHCH(C4H6)COOH	HOCH ₂ CH(CH ₁)CH ₂ -NCH ₄ CH ₂ CH ₂ CH ₂	0.79	128	.01	.5223	$C_{22}H_{31}NO_2$	4.10	1.08
4	CH2CH2CH2CHCH(CH3CH2CH2CH2)COOH	HOCH ₃ CH(CH ₁)CH ₂ -NCH ₂ CH ₂ CH ₂ CH ₂	96.1	100	.0131	.4681	C ₁₈ H ₃₃ NO ₂	4.74	1.72
ΰ	CH2CH2CH=CHCH(C6H,)COOH	HOCH ₂ CH ₂ CH(CH ₄)-NCH ₂ CH ₂ CH ₂ CH ₂	92.3	146	.0241	.5213	$C_{21}H_{29}NO_2$	4.28	1.38
9	CH ₃ CH ₅ CH ₅ CH ₇ CHCH(CH ₅ CH ₅ CH ₁ CH ₁)COOH	HOCH ₂ CH ₂ CH(CH ₃)-NCH ₂ CH ₂ CH ₂ CH ₂	96.2	115	.027	.4717	C ₁₈ H ₃₃ NO ₂	4.74	1.75
2	CH2CH2CH2CH=CHCHCH(C4H6)COOH	HOCH ₂ C(CH ₃) ₂ CH ₂ -NCH ₂ CH ₂ CH ₂ CH ₂ ·4	85.5	130	1 200.	.5187	C23H38NO2	3.94	3.92
8	CH2CH2CH2CHCH(CH3CH2CH2)COOH	HOCH2C(CH1)2CH2_NCH2CH2CH2CH2	90.6	131	.11	.4677	C19H46NO2	4.53	1.57

6	CH2CH2CH—CHCHCH(C,Ha)COOH	HOCH2CH2CH2CH2-NCH2CH2CH2CH2	86.0	138	11.	.5192	C21H29NO2	4.28	4.26
10	CHrCHrCHrCHCHCH(CeHe)COOH	HOCH ₂ CH ₂ CH ₂ CH ₂ -NCH ₂ CH ₂ CH ₂ CH ₂	87.7	162	.38	.5241	$C_{22}H_{31}NO_2$	4.10	4.21
11	CH ₂ CH ₂ CH ₂ CHCH(CH ₃ CH ₂ CH ₂ CH ₂)COOH	HOCH ₂ CH ₂	95.4	130	.07	.4698	C18H33NO2	4.74	4.83
12	CH2CH2CH—CHCHCH(C4H3)COOH	HOCH2CH2-O-CH2CH2-NCH2CH2CH2CH2	87.2	152	.03	1.5188	C21H29NO3	1.08	4.07
13	CH2CH2CH2CHCH(CH3CH2CH2)COOH	HOCH ₂ CH ₂ -O-CH ₂ CH ₂ -NCH ₂ CH ₂ CH ₂ CH ₂	75.1	130	.04	1.4691	C ₁₈ H ₃₃ NO ₃	4.49	4.50
14	CH ₂ CH ₂ CH=CHCHCH(C ₆ H ₆)COOH	HOCH ₂ CH ₂ N(CH ₃)CH(CH ₃) ₂	79.2	112	.015]1	1.5091	C19H27NO2	4.65	4.69
15	CH2CH2CH2CHCH(C4H6)COOH	HOCH ₂ CH ₂ N(CH ₃)CH(CH ₃) ₂	79.2	145	.15 1	1.5017	C19H29NO2	1.62	4.84
16	CHr2CHr2CH=CHCHCH(C6H4)COOH	HOCH ₂ CH ₂ N(CH ₄)CH(CH ₃) ₂	79.4	123	10.	1.5140	C20H29NO2	1.44	4.46
17	CH2CH2CH2CHCHCH(CH2CH2CH2CHCH)COOH	HOCH ₂ CH ₂ N(CH ₃)CH(CH ₃) ₂	51.1	125	.03	.4918	C ₁₉ H ₃₁ NO ₂	4.59	4.58
18	CH2CH2CH2CH2CHCH(CH3CH2CH2)COOH	HOCH ₂ CH ₂ -N(CH ₃)CH(CH ₃) ₂	77.2	98	.03	1.4547	C ₁₆ H ₃₁ NO ₂	5.20	5.26
19	CH2CH2CH2CH=CHCHCH(C4H4)COOH	HOCH(CH ₃)CH ₂ N(CH ₃)CH(CH ₃) ^{2^c, •}	63.8	122	10.	1.5080	C ₂₁ H ₃₁ NO ₂	4.25	4.52
30	CH ₂ CH ₂ CH—CHCH(C ₆ H ₅)COOH	HOCH ₂ CH(CH ₃)N(CH ₃)CH(CH ₃) ₂	85.6	116	10.	1.5082	C20H29NO2	4.44	4.47

TABLE II

	\mathbf{R}	0	R''.
SALTS	Ċ	CHĊ—($D - C_n H_{2n} - N$ HX
	//		\sim /
	R'		R'''

NO.ª	SALT FORM-	YIELD,	M.P., °C.¢	CRYSTALLIZING	EMPIRICAL FORMULA	ANALYSES	,%	PASMO-
	ING ACID	%°		SOLVENT		Calc'd	Found ^d	ANTISI DIC AC
1	HCl	74.0	153-154.5	MeEtCO	$C_{22}H_{32}ClNO_2$	Cl, 9.38	9.23	0.01
2	HCl	87.5	125-127	EtOAc	$C_{18}H_{34}CINO_2$	Cl, 10.68	10.78	.01
3	HCl	71.8	119-123	EtOAc	$C_{22}H_{32}ClNO_2$	Cl, 9.38	9.31	.01
4	HCl	78.2	88-89	$EtOAc + Et_2O$	$C_{18}H_{34}ClNO_2$	Cl, 10.68	10.72	.01
5	HCl	83.8	133-136	MeEtCO	$C_{21}H_{30}ClNO_2$	Cl, 9.74	9.73	.03
6	HCl	68.4	78-80	$EtOAc + Et_2O$	$C_{18}H_{34}ClNO_2$	Cl, 10.68	10.64	.01
8	HCl	90.2	134-135.5	EtOAc	$C_{19}H_{36}ClNO_2$	Cl, 10.02	10.00	.01
9	HC1	84.6	101-103	EtOAc	$C_{21}H_{30}ClNO_2$	Cl, 9.74	9.52	.01
10	HCl	65.4	97-99	EtOAc	$C_{22}H_{32}ClNO_2$	Cl, 9.38	9.47	.01
11	Citric acid	92.0	93.5-94.5	EtOH + EtOAc	$C_{24}H_{41}NO_{9}$	N, 2.87	2.89	.01
12	Citric acid	79.3	87-90	MeEtCO	$C_{27}H_{37}NO_{10}$	N, 2.62	2.65	.01
13	Citric acid	92.2	77-79	EtOAc	$C_{24}H_{41}NO_{10}$	N, 2.78	2.85	.01
14	HCl	64.0	93-98	$EtOAc + Et_2O$	$C_{19}H_{28}ClNO_2$	Cl, 10.49	10.44	.15
15	HCl	75.3	105-106.5	$EtOAc + EtO_2$	$C_{19}H_{30}ClNO_2$	Cl, 10.43	10.48	.33
16	HCl	65.3	121-124	EtOAc	C ₂₀ H ₂₀ ClNO ₂	Cl, 10.08	10.21	.33
17	HCl	66.5	90-97	$EtOAc + Et_2O$	$C_{19}H_{32}CINO_2$	Cl, 10.37	10.32	.12
18	HCl	77.6	74-80	$EtOAc + Et_2O$	$C_{16}H_{32}ClNO_2$	Cl, 11.59	11.70	.10
20	Citric acid	76.9	83-90	$EtOH + EtOAc + Et_2O$	C ₁₆ H ₃₇ NO9	N, 2.76	2.92	.17
21	Citric acid	71.3	85-95	$EtOH + EtOAc + Et_2O$	C27H39NO9	N, 2.69	2.84	.30
22	Citrie acid	87.4	81-84	$EtOH + EtOAc + Et_2O$	C23H41NO9	N, 2.95	2.91	.10
23	HCl	94.5	146–147	$EtOAc + Et_2O$	$C_{19}H_{28}ClNO_2$	Cl, 10.49	10.581	.14
24	HCl	78.6	128-129	EtOAc	C ₁₉ H ₃₀ ClNO ₂	Cl, 10.43	10.61.	.12
25	HCl	72.8	114-115	EtOAc	C ₂₀ H ₂₆ ClNO ₃	Cl, 9.74	9.88	.01
26	HCl	62.9	109–114 <i>i</i>	Me₂CO	$C_{20}H_{22}ClNO_2$	N, 4.07 Cl, 10.31	$\begin{array}{c} 4.05 \\ 10.38 \end{array}$.02

ANTISPASMODICS. IV

NO ª	SALT FORM-	YIELD	¥ n °c €	CRYSTALLIZING	EMPIRICAL FORMULA	analyses, %		PASMO-
NO.	ING ACID	%⁵	m.r, t.	SOLVENT		Calc'd	Found ^d	ANTISI DIC A
27	Citric acid	27.2 ⁱ	108-112*	EtOH	C ₂₇ H ₃₁ NO ₉	N, 2.73	2.77	.01
28	HC1	58.1 [;]	217-220	EtOH	$C_{21}H_{24}ClNO_2$	N, 3.92 Cl, 9.91	3.92 9.82	.01
29	HCl	45.3 ⁱ	157-162	Me ₂ CO	$C_{21}H_{24}ClNO_2$	N, 3.92 Cl, 9.91	4.11 9.81	.01

TABLE II (Continued)

^a Numbers correspond to the numbers of the free bases in Table I. ^b The yield is based on the distilled free base and would in most cases be essentially quantitative except that the filtrates from the crystallizations were usually not reworked. ^c Melting points are uncorrected. ^d Table I footnote ^b. ^e Preliminary testing was done by Dr. Milton J. Vander Brook of our Department of Pharmacology by the method of Magnus [Arch. ges. Physiol. (Pfügers), **102**, 123 (1904); Arch. ges. Physiol. (Pfügers), **103**, 515 (1904)] and the results are expressed as a fraction of the activity of atropine sulfate when tested on muscle stimulated with acetylcholine chloride. ^f Calc'd: C, 67.54; H, 8.35; N, 4.14. Found: C, 67.46; H, 8.21; N, 4.07. ^e Calc'd: C, 67.14; H, 8.90. Found: C, 67.20; H, 8.68. ^h Calc'd: C, 66.01; H, 7.20; N, 3.88. Found: C, 65.12; H, 7.28; N, 4.01. ⁱ Yield based on the acid chloride used in the preparation. ^j A sample of this hydrochloride heated at 100° under a vacuum of 0.01 mm., sintered and then again crystallized, m.p. 131-136°. *Anal.* Found: N, 4.35; Cl, 10.30. ^k After sintering at about 93-96°.

EXPERIMENTAL

2-(N-Isopropylamino) propanol.¹ This was prepared in 85% yield from acetone and 2-aminopropanol by the procedure described by Hancock and Cope (5) for 2-isopropylaminoethanol. B.p. 71° (15 mm.).

2-(N-Isopropyl-N-methylamino)propanol.¹ This was prepared in 65% yield from the above amine by the procedure described by Icke, Wisegarner, and Alles (6) for β -phenyl-ethyldimethylamine. B.p. 81° (35 mm.), $n_{\rm p}^{25}$ 1.4371.

Anal. Calc'd for C7H17NO: N, 10.68. Found: N, 10.71.

SUMMARY

Twenty-nine new tertiary amino alkyl esters of disubstituted acetic acids have been prepared and their antispasmodic activity is reported.

KALAMAZOO 99, MICHIGAN

REFERENCES

(1) KOLLOFF, HUNTER, WOODBUFF, AND MOFFETT, J. Am. Chem. Soc., 70, 3862 (1948).

- (2) KOLLOFF, HUNTER, AND MOFFETT, J. Am. Chem. Soc., 72, 1650 (1950).
- (3) MOFFETT, J. Org. Chem., 14, 862 (1949).
- (4) WRIGHT, LINCOLN, AND HUNTER, J. Am. Chem. Soc., 72, in press.
- (5) HANCOCK AND COPE, Org. Syntheses, 26, 38 (1946).
- (6) ICKE, WISEGARNER, AND ALLES, Org. Syntheses, 25, 89 (1945).